@tsampoy @KnightOfRen
Planetary gear trains provide high power density in comparison to standard parallel axis gear trains. They provide a reduction in volume, multiple kinematic combinations, purely torsional reactions, and coaxial shafting. Disadvantages include high bearing loads, constant lubrication requirements, inaccessibility, and design complexity.[13][14]
The efficiency loss in a planetary gear train is typically about 3% per stage.[15] This type of efficiency ensures that a high proportion (about 97%) of the energy being input is transmitted through the gearbox, rather than being wasted on mechanical losses inside the gearbox.
The load in a planetary gear train is shared among multiple planets; therefore, torque capability is greatly increased. The more planets in the system, the greater the load ability and the higher the torque density.
The planetary gear train also provides stability due to an even distribution of mass and increased rotational stiffness. Torque applied radially onto the gears of a planetary gear train is transferred radially by the gear, without lateral pressure on the gear teeth.
In a typical application, the drive power connects to the sun gear. The sun gear then drives the planetary gears assembled with the external gear ring to operate. The whole set of planetary gear system revolves on its own axis and along the external gear ring where the output shaft connected to the planetary carrier achieves the goal of speed reduction. A higher reduction ratio can be achieved by doubling the multiple staged gears and planetary gears which can operate within the same ring gear.
The method of motion of a planetary gear structure is different from traditional parallel gears. Traditional gears rely on a small number of contact points between two gears to transfer the driving force. In this case, all the loading is concentrated on a few contacting surfaces, making the gears wear quickly and sometimes crack. But the planetary speed reducer has multiple gear contacting surfaces with a larger area that can distribute the loading evenly around the central axis. Multiple gear surfaces share the load, including any instantaneous impact loading, evenly, which make them more resistant to damage from higher torque. The housing and bearing parts are also less likely to be damaged from high loading as only the planet carrier bearings experience significant lateral force from the transmission of torque, radial forces oppose each other and are
@tsampoy @KnightOfRen
The General Electric LM2500 is an industrial and marine gas turbine produced by GE Aviation. The LM2500 is a derivative of the General Electric CF6 aircraft engine.
The LM2500 is available in 3 different versions:
The LM2500 delivers 33,600 shp (25,100 kW) with a thermal efficiency of 37 percent at ISO conditions. When coupled with an electric generator, it delivers 24 MW of electricity at 60 Hz with a thermal efficiency of 36 percent at ISO conditions.[1]
The improved, 3rd generation, LM2500+ version of the turbine delivers 40,500 shp (30,200 kW) with a thermal efficiency of 39 percent at ISO conditions. When coupled with an electric generator, it delivers 29 MW of electricity at 60 Hz with a thermal efficiency of 38 percent at ISO conditions.[2][3]
The latest, 4th generation, LM2500+G4 version was introduced in November 2005 and delivers 47,370 shp (35,320 kW) with a thermal efficiency of 39.3 percent at ISO conditions.[4]
As of 2004, the U.S. Navy and at least 29 other navies had used a total of more than one thousand LM2500/LM2500+ gas turbines to power warships.[5] Other uses include hydrofoils, hovercraft and fast ferries.
In 2012, GE developed an FPSO version to serve the oil and gas industry's demand for a lighter, more compact version to generate electricity and drive compressors to send natural gas through pipelines.
The LM2500 was first used on the US Navy GTS Admiral W. M. Callaghan in 1969, after the original FT-4 gas turbines experienced many technical problems.[7] Later, they were used in US Navy warships in the Spruance class class of destroyers and the related Kidd class, which were constructed from 1970. In this configuration it was rated to 21,500 shp (16,000 kW). This configuration was subsequently used into the 1980s in the Oliver Hazard Perry-class frigates, and Ticonderoga-class cruisers. It was also used by one of People's Republic of China's Type 052 Luhu Class Missile Destroyer (Harbin 112) acquired before the embargo.
The LM2500 was uprated to 26,500 shp (19,800 kW) for the Arleigh Burke-class destroyers, which were initiated in the 1980s and started to see service in the early 1990s, and the T-AOE-6 class of fast combat tanker.
In 2001 the LM2500 (20 MW) was installed in a sound-proof capsule in the South African Navy Valour class (Meko A-200 SAN) frigates as part of a CODAG propulsion system with two MTU 16V 1163 TB93 Propulsion Diesels.
The current generation was uprated in the late 1990s to over 30,00
I don't know what you mean exactly, but I can just give u some info about the physics system. The main difference lies in the amount of iterations the physics solver performs per frame. For low I think it was 15, medium 20 and high 25. The higher the solver iteration count, the "stiffer" the joints are.
The missile knows where it is at all times. It knows this because it know where it isn't. By subtracting where it is from where it isn't, or where it isn't from where it is, whichever is greater, it obtains a difference, or deviation. The guidance subsystem uses deviations to generate corrective commands to drive the missile from a position where it is to a position where it isn't and, arriving at a position where it wasn't, it now is. Consequently, the position where it is, is now the position that it wasn't, and it follows that the position that it was is now the position that it isn't. In the event that the position that it is in is not the position that it wasn't, the system has acquired a variation; the variation being the difference between where the missile is and where it isn't. If variation is considered to be a significant factor, it, too, may be corrected by the GEA. However, the missile must also know where it was. The missile guidance computer scenario works as follows: because a variation has modified some of the information the missile has obtained, it is not sure just where it is, however it is sure where it isn't, within reason, and it knows where it was. It now subtracts where it should be from where it wasn't, or vice versa. And by differentiating this from the algebraic sum of where it shouldn't be and where it was, it is able to obtain the deviation and its variation, which is called error.
@SuperRoto I like your way of thinking my man
@tsampoy @KnightOfRen
Planetary gear trains provide high power density in comparison to standard parallel axis gear trains. They provide a reduction in volume, multiple kinematic combinations, purely torsional reactions, and coaxial shafting. Disadvantages include high bearing loads, constant lubrication requirements, inaccessibility, and design complexity.[13][14]
The efficiency loss in a planetary gear train is typically about 3% per stage.[15] This type of efficiency ensures that a high proportion (about 97%) of the energy being input is transmitted through the gearbox, rather than being wasted on mechanical losses inside the gearbox.
The load in a planetary gear train is shared among multiple planets; therefore, torque capability is greatly increased. The more planets in the system, the greater the load ability and the higher the torque density.
The planetary gear train also provides stability due to an even distribution of mass and increased rotational stiffness. Torque applied radially onto the gears of a planetary gear train is transferred radially by the gear, without lateral pressure on the gear teeth.
In a typical application, the drive power connects to the sun gear. The sun gear then drives the planetary gears assembled with the external gear ring to operate. The whole set of planetary gear system revolves on its own axis and along the external gear ring where the output shaft connected to the planetary carrier achieves the goal of speed reduction. A higher reduction ratio can be achieved by doubling the multiple staged gears and planetary gears which can operate within the same ring gear.
The method of motion of a planetary gear structure is different from traditional parallel gears. Traditional gears rely on a small number of contact points between two gears to transfer the driving force. In this case, all the loading is concentrated on a few contacting surfaces, making the gears wear quickly and sometimes crack. But the planetary speed reducer has multiple gear contacting surfaces with a larger area that can distribute the loading evenly around the central axis. Multiple gear surfaces share the load, including any instantaneous impact loading, evenly, which make them more resistant to damage from higher torque. The housing and bearing parts are also less likely to be damaged from high loading as only the planet carrier bearings experience significant lateral force from the transmission of torque, radial forces oppose each other and are
@tsampoy @KnightOfRen
The General Electric LM2500 is an industrial and marine gas turbine produced by GE Aviation. The LM2500 is a derivative of the General Electric CF6 aircraft engine.
The LM2500 is available in 3 different versions:
The LM2500 delivers 33,600 shp (25,100 kW) with a thermal efficiency of 37 percent at ISO conditions. When coupled with an electric generator, it delivers 24 MW of electricity at 60 Hz with a thermal efficiency of 36 percent at ISO conditions.[1]
The improved, 3rd generation, LM2500+ version of the turbine delivers 40,500 shp (30,200 kW) with a thermal efficiency of 39 percent at ISO conditions. When coupled with an electric generator, it delivers 29 MW of electricity at 60 Hz with a thermal efficiency of 38 percent at ISO conditions.[2][3]
The latest, 4th generation, LM2500+G4 version was introduced in November 2005 and delivers 47,370 shp (35,320 kW) with a thermal efficiency of 39.3 percent at ISO conditions.[4]
As of 2004, the U.S. Navy and at least 29 other navies had used a total of more than one thousand LM2500/LM2500+ gas turbines to power warships.[5] Other uses include hydrofoils, hovercraft and fast ferries.
In 2012, GE developed an FPSO version to serve the oil and gas industry's demand for a lighter, more compact version to generate electricity and drive compressors to send natural gas through pipelines.
The LM2500 was first used on the US Navy GTS Admiral W. M. Callaghan in 1969, after the original FT-4 gas turbines experienced many technical problems.[7] Later, they were used in US Navy warships in the Spruance class class of destroyers and the related Kidd class, which were constructed from 1970. In this configuration it was rated to 21,500 shp (16,000 kW). This configuration was subsequently used into the 1980s in the Oliver Hazard Perry-class frigates, and Ticonderoga-class cruisers. It was also used by one of People's Republic of China's Type 052 Luhu Class Missile Destroyer (Harbin 112) acquired before the embargo.
The LM2500 was uprated to 26,500 shp (19,800 kW) for the Arleigh Burke-class destroyers, which were initiated in the 1980s and started to see service in the early 1990s, and the T-AOE-6 class of fast combat tanker.
In 2001 the LM2500 (20 MW) was installed in a sound-proof capsule in the South African Navy Valour class (Meko A-200 SAN) frigates as part of a CODAG propulsion system with two MTU 16V 1163 TB93 Propulsion Diesels.
The current generation was uprated in the late 1990s to over 30,00
@tsampoy Horsepower
@Highground Im scared
@AlienbeefyTheCheekiBreeki shitty performance
Some random dude on the internet once told me imitation is the greatest form of flattery
+9@Nerfaddict [insert pickup line]
what why how when whatfor
androo
+6@YoDudeChase war never changes
@YoDudeChase lol
@YoDudeChase lol
+1@YoDudeChase lol
+1Cool and good
+1This is basic funky trees my man
+2because he is not a mod
like the aesthetic
Lol
@KnightOfRen Yes
Add machine guns and you've got yourself the ultimate sprinkler
1 more point
@ProjectVideoGame bruh
This looks really, really good
With bone
You did a damn good job on that paint job
I don't know what you mean exactly, but I can just give u some info about the physics system. The main difference lies in the amount of iterations the physics solver performs per frame. For low I think it was 15, medium 20 and high 25. The higher the solver iteration count, the "stiffer" the joints are.
The missile knows where it is at all times. It knows this because it know where it isn't. By subtracting where it is from where it isn't, or where it isn't from where it is, whichever is greater, it obtains a difference, or deviation. The guidance subsystem uses deviations to generate corrective commands to drive the missile from a position where it is to a position where it isn't and, arriving at a position where it wasn't, it now is. Consequently, the position where it is, is now the position that it wasn't, and it follows that the position that it was is now the position that it isn't. In the event that the position that it is in is not the position that it wasn't, the system has acquired a variation; the variation being the difference between where the missile is and where it isn't. If variation is considered to be a significant factor, it, too, may be corrected by the GEA. However, the missile must also know where it was. The missile guidance computer scenario works as follows: because a variation has modified some of the information the missile has obtained, it is not sure just where it is, however it is sure where it isn't, within reason, and it knows where it was. It now subtracts where it should be from where it wasn't, or vice versa. And by differentiating this from the algebraic sum of where it shouldn't be and where it was, it is able to obtain the deviation and its variation, which is called error.
+7Never add parts, add power.
@Gluck Borkpower
@Hellosss38 Horsepower Horsepower.
Horsepower
@Sunkray Horsepower
@Hellosss38 Horsepower
@banbantheman lad
@JeskoGoesVROOM Big horsepower
+1@Aldriech Predictable.
@Aldriech Horsepower is horsepower
@Hellosss38 Horsepower
Not enough horsepower
+2@hpgbproductions Good wattage. Horsepower
myes
@Aldriech @AWESOMENESS360 Horsepower
@KettleKip Be gone. Horsepower
@Sm10684 Horsepower
nice plen
Thats a lot of horsepower
+1How much horsepower
How much horsepower
Gotta agree with you online school is a pain